Цианобактерии — группа фотосинтезирующих бактерий. Как и растения, они способны превращать солнечную энергию в химическую и выделять кислород как побочный продукт фотосинтеза. Эти организмы считаются одними из древнейших форм жизни на Земле: их следы обнаружены в виде строматолитов (донные отложения, созданные цианобактериями, окаменевшие бактериальные маты древности), которым более 3,5 миллиарда лет, что свидетельствует об их существовании уже на ранних этапах эволюции нашей планеты.
У растений центральный элемент фотосинтеза — хлорофилл — пигмент, который находится в хлоропластах клеток. Он поглощает свет в синих и красных областях спектра и отражает зеленый. Именно отражение зеленого света делает листья растений зелеными.
Хлорофилл есть и у цианобактерий, а у некоторых видов еще и группа дополнительных водорастворимых пигментов — фикобилинов. В состав этой группы входит фикоэритробилин, который поглощает свет в зеленой и желтой областях спектра, с длинами волн примерно от 495 до 570 нанометров.
Команда японских ученых под руководством Таро Мацуо (Taro Matsuo) из Нагойского университета задалась двумя вопросами: зачем цианобактериям нужны дополнительные пигменты (фикоэритробилин), если у них уже есть хлорофилл? Что наличие таких пигментов может говорить о среде, в которой развивались первые фотосинтезирующие организмы? Исследователи провели серию экспериментов и симуляций, чтобы понять, как древний океан, который миллиарды лет назад почти полностью покрывал поверхность Земли, повлиял на эволюцию цианобактерий.
По словам Мацуо, во время архейского эона — один из четырех эонов истории Земли, охватывающий промежуток времени от четырех до 2,5 миллиарда лет назад — океан был насыщен гидроксидом железа (Fe(OH)₃). Это вещество чем-то напоминает ржавчину — рыхлое, коричневато-красное.
Мацуо и его коллеги провели моделирование, чтобы узнать, какое количество гидроксида железа могло быть в то время в океане, и определить область спектра, которая была необходима для фотосинтезирующих организмов. Ученые использовали компьютерные модели, позволяющие «воссоздать» условия, похожие на условия в архее.
Анализ показал, что в архейском океане находилось так много гидроксида железа, что он действовал как гигантский фильтр: поглощал свет в синей области спектра. Вода, в свою очередь, поглощала свет в красной области спектра, как и сейчас. Зеленый свет должен был оставаться «неуязвимым» и мог проникать в глубины. Ученые пришли к выводу, что с большой долей вероятности в глубины проникал зеленый свет в диапазоне длин волн, который сегодня поглощается дополнительными водорастворимыми пигментами цианробактерий — фикобилинами.
Однако моделирование — это только часть работы. Чтобы убедиться в своей правоте, исследователи провели эксперимент. Они попытались вырастить в лаборатории под разным светом несколько видов цианобактерий (с фикоэритробилином и без него). Те цианобактерии, у которых были фикоэритробилин, расли в разы быстрее «обычных» под воздействием зеленого света (в диапазоне длин волн, который, предположительно, проникал в глубины древнего океана). Ранее генетический анализ показал, что пигмент фикоэритробилин присутствовал у общего предка современных цианобактерий. То есть зеленый «навык» — не случайная мутация, а древнее эволюционное изобретение.
Исследователи пошли еще дальше и отправились к японскому вулканическому острову Ио, который представляет собой часть архипелага Кадзан. Там на глубине 5,5 метра горячие источники насыщают воду железом, из-за чего вода вокруг острова имеет зеленый цвет, как в архейском океане.
Оказалось, на этой глубине цианобактерии с дополнительными «зелеными пигментами» буквально захватили территорию, а у поверхности, где больше синего света, доминировали другие виды без фикоэритробилина. Иными словами, природа сама повторила лабораторный эксперимент, подтвердив, что жизнь всегда адаптируется под условия среды.